$$f(x) = \frac{x^2 - 4}{3}, \quad x \le 0$$
 $g(x) = \ln|3x - 1|$

Solve gf(x) = 0

$$gf(x) = \ln|x^2 - 5|$$
, $x \le 0$

 $\ln|x^2 - 5| = 0 \Rightarrow |x^2 - 5| = 1$ Either $x^2 - 5 = 1$ or $5 - x^2 = 1$ In the first case $x^2 = 6$ and in the second case $x^2 = 4$. Since gf(x) is defined for $x \le 0$ the negative square root is required in each case. $x = -\sqrt{6}$ or x = -2.