Diagram not
drawn to scale

Figure 4 shows a sketch of part of the curve C with parametric equations
x=30sinf, y=sec’d, 0<0< %
The point P(k, 8) lies on C, where k is a constant.

(a) Find the exact value of k.
(2)

The finite region R, shown shaded in Figure 4, is bounded by the curve C. the y-axis,
the x-axis and the line with equation x = k.

(b) Show that the area of R can be expressed in the form

’
1‘[ (6sec’ @ + tan fsec’ 0)do
where A, a and § are constants to be determined.
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(c) Hence use integration to find the exact value of the area of R.
(6)
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(b) %= 3sinf + 36 cos8 = dx = (3sinf + 30 cos 8)do
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(c) 3 [3(sec®ftanb + 6 sec®H)do

=3 [3(sec? ftan 0) d6 + 3 [3( O sec? ) df
The first term above may be integrated by recognition or by substitution.

Using substitution:

du
cos20

Letu=tan9then3—z=sec20=>d6=

When9=0,u=0andwhen0=§,u=\/§.
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The integral can now be written as 3 fo\ru du = 3.
Using integration by parts for the second term:
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letu = 0 and == = sec? @
a6

du

E=1andv=tan9

The integral can now be written as
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Adding the two results gives 3 ++3m —1n8.



